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abstract. — Antennas separated by long distances have large delays and delay rates among 
them. If wide-bandwidth signals are received, frequency domain beamformers based on 
filter banks can be used to carry out signal combination. A new scheme based on subband 
delay compensation is proposed in this article. The main advantages of this scheme are the 
wider field of view of the array, the reduction of distortion in the transfer function, and the 
simplification of communications among sites. In order to perform coherent combination, 
the delay and delay rates need to be estimated. In order to do so, an algorithm is devised 
to estimate the differential phase, delay, and delay rate between two antennas based on 
the subband signals. This algorithm is first developed for a stationary case, in which the 
delay rate is zero. The product of subband signals is averaged and an inverse discrete Fourier 
transform (IDFT) is carried out to yield an estimate of the cross-correlation. For the nonsta-
tionary case, first the delay rate is calculated by means of a two-dimensional IDFT, and from 
that point a function similar to the one in the stationary case is obtained so as to compute 
the delay and phase offset.

I. Introduction

Satellite communication ground segments made up of arrays of parabolic antennas are 
characterized by having a large delay among antenna elements as compared to other types 
of phased arrays. Because of this, it is necessary to adjust the delay before phase compensa-
tion even though the signal has a moderate bandwidth. Additionally, if the antennas to 
be combined are not in the same location, the delay rate can also be very large and will 
have to be compensated as well. The maximum delay between two antennas on Earth 
pointing towards a deep-space probe occurs when both antennas are separated by a spheri-
cal angle equal to 90 deg; one of them is pointing at the horizon and the other at zenith. 
The geometric delay can be calculated as /cB ug :x = , where B is the baseline vector and 
u is the direction to the signal source. Under these circumstances, the maximum delay is 

/R cmax Earthx = =  21 milliseconds (ms). The delay rate can be calculated as /cB ug :x =l l , 
which, for a deep-space probe, is ( ) /cB ug # :~x =l , where ~ is the angular velocity vector 
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of the rotation of Earth,  b~ 7.3 × 10–5 rad/s. When two antennas are at diametrically op-
posed points, the delay rate between them is maximum and equal to /R c2max Earthx ~= =l

3.1 ms/s.

If the received signal is narrowband, the effect of the delay rate can be approximated by a 
differential Doppler shift among antennas in the array [1]:

.fDoppler RFxD X= l

Equation (1) indicates that the Doppler frequency shift equals the product of the delay rate 
and the received frequency. The cross-ambiguity function (CAF) equation can be used to 
calculate both the delay and the delay rate:

p, .expCAF x t y t j t dt2*
p RF

0
x x x rx X= - -

3
l lu u^ ^ ^ ^h h h h#

Through calculation of the CAF of two antennas’ received signals, and according to the 
peak position of the CAF, the delay and delay rate are achieved. As noted previously, the 
model in Equation (1) is an approximation only valid for narrowband signals or very low 
delay rates. In the more general case, the effect of the delay rate in the signal is the  
multiplication of the transform by the term e j t~x- l . According to this term, each frequency 
will have a different equivalent Doppler frequency; the difference in Doppler frequency 
across band is equal to BW : xl. For instance, for a delay rate equal to 10–9 and a bandwidth 
of 100 MHz, only 0.1 Hz of difference across band will exist. If the delay rate is increased to 
10–6, that difference will amount to 100 Hz. Another way of looking at the problems that 
arise when high delay rates are involved is by taking a look at the delay. With the same 
delay rate of 10–6 and BW = 100 MHz , it is necessary to use a temporal window of at least 
0.01 s in order to have a frequency resolution of 100 Hz. During these 0.01 s, at least 2 106:   
samples will have been taken, which means that from the beginning of the window until 
the end, a slip of two samples will have occurred. Therefore, the delay estimated by Equa-
tion (2) will be not be accurate.

Nowadays, subband beamformers are being proposed to combine signals in arrays of para-
bolic dishes [2]. When working with subband beamformers, the CAF can be applied at the 
signals prior to subband decomposition or to the subband signals after the analysis filters. 
The former case is difficult to implement in hardware due to the high sampling rate of the
fullband signal. Additionally, when high delay rates are involved, the frequency resolution 
is limited to the maximum delay shift in the analysis window. The latter case has an easier 
hardware implementation, but it can only be applied to the signals inside each subband 
without taking advantage of the information in the rest of the subbands; hence, it will be 
less accurate.

In order to circumvent these problems, the aim of this article is to find an algorithm that 
can estimate the phase, delay, and delay rate between two antennas from the joint subband 
signals under scenarios of high delay rates. In addition, an arraying scheme is proposed  
that compensates for the differential delay, delay rate, and phase among faraway ground 
stations.

(1)

(2)
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II. Signal Model

Consider the following model [3] for a waveform incident on a reference point rp:

p
p p ,S S e d S ej t

c c
j tdX X X X X X X X= - - = -

3

3 X X

-

- -x xl l l^ ^ ^ ^^ ^h h h hh h#

where ( )S X  is the Fourier transform of ( )s t , the complex baseband representation of ( )s t( )RF

and p ( )tx  is given by

p
p
,t c

tu r:
x =

t^ ^h h

where ( )tut  is the unit magnitude vector that points from rp towards the source, and c is the 
speed of light. As p ( )tx  varies with time, a Doppler shift appears that is due to the motion of 
the pth element of the array with respect to a frame of reference that is fixed to the source in 
the far field (zeroth element). In the case of deep-space probes, the main component of this 
motion is due to the rotation of Earth. 

The output of the pth array element is modeled as pp ( ; ( )) ( )G t SuX Xt , where pp ( ; ( )) ( )G t SuX Xt  is 
the frequency response of the antenna in the direction of ( )tu . Next, the receiver shifts the 
source spectrum to baseband by mixing the incoming signal with a local oscillator (LO) 
frequency LOX . The effects in the transfer function due to cables, amplifiers, and downcon-
verters can be modeled as a single receiver-dependent baseband frequency response p ( )C X . 
In summary, the measurement by the pth receiver can be modeled as

pp p pp p
p,, ,V G tC G t S C e Suuc c

j t
cX X X X XX X X X X -= - = - xX-^ ^ ^^ ^ ^ ^^ ^^h h h h h h h h hh

where tp p( )t p
cx x x= + l , i.e., a constant term p

cx  plus a linear time variation tpxl . After mixing 
the RF signal with an LO with frequency LOX , the signal at IF is

p
p

p ; .V C G t S eup
IF

IF LO IF
j tLOX X X X X XX + -= - xX X- +t^ ^ ^^ ^ ^ ^h h hh h h h

If the signal is now digitized and assuming equal antenna responses, the spectrum of the 
digital signal at IF can be shown to be

,V X e e e ep
IF

IF
j j j n j nLO p

c
p
c

p
IF

p~ ~ ~= - x ~ ~X D- - - -d xl^ ^h h

where ( )X IF~ ~-  is the discrete time Fourier transform equivalent of the analog baseband 
transfer function ( ; ( )) ( )( ) t SC G uIF IFLOX X X X XX + -- t , /pd fp

IF
LO sxX= l  is the Doppler 

frequency due to the delay rate, and /Tp
c

p
c

sxD = . By carrying out a digital second downcon-
version to baseband, the resulting signal is

n
p

p ,X X e e e ej j jd n jc p
c

p
c

p~ ~= x ~ ~xX D- - - - l^ ^h h

where pd fs
c p

=
~ xl

 is the differential Doppler frequency with the signal at baseband. If the  
signal p p[ ] ( )X n X ~

F  goes through a uniform modulated filter bank with prototype 
filter [ ]h n , K bands, and M  decimation ratio, the signal at band k can be represented as [4]

(3)

(4)

, 

(5)

(6)

(7)

(8)
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X m W X m,p,k K
kmM

p k= -6 6@ @

where Xp,k is the short-time Fourier transform of p [ ]x n : 

.X m h mM n W x n,p k K
k mM n

n
p= -

3

3
-

=-

^ h6 6 6@ @ @|

This short-time Fourier transform can be interpreted as the result of passing the signal 
through a filter ( )H H kk K

2~ ~= - r_ i and decimating by a factor M  the output of the sig-
nal. If the prototype filter [ ]h n  is selective enough, and in addition oversampling is used, 
the alias components can be discarded, i.e.,

p .F X Mm H M X, kp k -
~~` `j j6 @# -

After modulating X m,p k 6 @ by WK
kmM- , the result is

p

p

X H M X M K
k
M

H M X M K
k
e e e e

1 2

2

,p k
SB

j j j d n j n
MK

k
M K

k p
c p

c
p
c

p
2 2p

c

-~
~

~
r

~ ~ r

+

= + x ~ x ~
x

X D- + - - + -r rD
l

l

^ ` aa
` a _ _

h j kk
j k i i

The different terms in Equation (12) are:

•	 e j K
k

c p
c

p
c2xX D- + r_ i. There is a phase ramp across the whole band equal to ( )T k K

k
p
c2+ D= r ; 

observe that the IDFT of ( )T k  is the m p
cd D-6 @.

•	 e j M
p
c

~-
D

. This is the Fourier transform of m M
p
c

d
D

-; E , and it is obviously due to the delay 
of 

M

pD
c

 samples at each subband.

•	 pe j d nK
k

p
2 x- + r l_ i . The phase rotation is also dependent on the subband number. This is 

because the filterbank effects a third downconversion on those bands with k 02 . It 
must be taken into account that n  is the full band sample number prior to decimation, 
and m

M
n

=  is the subband sample number. If we use the decimated sample number 
m instead of n, the result is that of increasing the frequencies by a factor of M, i.e., 

pe j d M MK
k

p
2 x- + r l^_ hi.

•	 e j n
M

p
~
x

-
l

. This term reflects the effect of the delay rate on the subband. Observe that this 
can also be expressed as e j mp~x- l , i.e., the delay rate is also pxl  at the subband level.

III. Arraying Scheme

All the exponential terms in Equation (12) can be compensated by multiplying the signal 
by their corresponding complex conjugate or delaying it by the appropriate amount. If 
the antennas are in different locations, sending the phase and delay values to each of the 
antennas can be very difficult due to synchronization issues. It is better to send all the digi-
tized data to a central site, where correlation and coherent combining is done jointly for 
all of the antennas. The transmission of the data can be done more effectively once each of 
the signals has been decomposed into subbands (Figure 1). In this way, the synchronization 
accuracy among the different streams of data can be reduced by a factor equal to the deci-

(9)

(10)

(11)

(12)
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mation ratio, as the data that need to be aligned are the subband samples. If the samples 
coming out of the analog-to-digital converters were sent directly, the jitter in the clocks and 
communication lines would cause the samples to jump from one time slot to another. This 
would be equivalent to a time-varying delay that should be compensated by subsequent 
stages. For instance, if the sampling period is equal to 1 nanosecond (ns), and the clocks 
and communication lines are synchronized by GPS, jitters on the order of several tens of 
nanoseconds can be expected. With a decimation ratio equal to 100, the required synchro-
nization accuracy is on the order of 0.1 ms, so it is very unlikely that a subband sample will 
fall in an erroneous time slot. Another advantage of this scheme is that in the case of work-
ing with narrowband signals, only those subbands with signals inside should be sent, with 
the consequent reduction in costs.

Once in the central site, all links coming from the remote ground stations are first demul-
tiplexed. Then, one of the ground stations is chosen as reference one (ground station zero 
in Figure 2), and the rest of the antennas are correlated with regard to this one in order to 
find the values of pxl  (delay rate), pD  initial delay in samples, and pz  (phase offset). In total,  
P–1 correlator units are required. Once this triplet of values is estimated for each of the 
ground stations, the subbands have to be equalized by compensating them in frequency 

pp,p k d
K

k2SB~ x
r

= + l , delay p,p k
p

m
SB

M

c

xD = +
D

l , and phase p,p k K

k2SB
c p
c cz x

r
X D= + . This is done by 

means of P–1 equalizer units; as ground station zero is reference one, no equalization is 
required for this ground station. Frequency compensation is done by a numeric control 
oscillator, and phase compensation by a complex multiplier. Delay compensation can be 
performed by the series of a coarse delay buffer and a fractional delay filter. The coarse 
delay buffer will implement the integer part of the delay ,p k

SBD8 B and the fractional delay fil-
ter [5] the remainder ,p k ,p k

SBSB DD - 8 B. For example, if the delay goes from 1.98 to 2.02 samples 
in 0.01 steps, the coarse delay buffer will be set at [ 1 1 2 2 2 ] samples and the fractional 
delay filter at [ 0.98 0.99 0 0.01 0.02 ] samples.

Once equalization is made and if no other distortions are present, the signals at each of the 
subbands can be added. However, the group delay at each ground station will be different, 
due mainly to electronics and cables. Therefore, a second stage is required to account for 
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Figure 1. Remote site subband decomposition.
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Figure 2. Central site equalization and combination.

these imbalances. In this second stage, only phase ,p k
SB
{  and delay ,p k

SB
n  need to be adjusted. 

The frequency and delay rates have already been compensated in the equalization stage. 
The residual estimation errors in frequency and delay rate will be accounted for by the suc-
cessive phase and delay estimations in the second stage. For this purpose, a correlator that 
deals with the complex signal can be used to estimate the residual phase and delay offsets 
due to group delay imbalances [6]. As it is not expected to have delay offsets larger than 
one sample, a fractional delay filter is enough to carry out the compensation. Successive 
delay and relay rate estimations will make it possible to compensate the second derivative 
of the delay.

The correlation that takes place in the first stage (XCORR p units) can take some milli-
seconds, as shown in Section V. During this time, no combination will be possible in the 
second stage, as the high differential Doppler among ground stations will render subband 
correlation very difficult. For instance, if pxl  = 10–6 and cf  = 8 GHz, then pd 2 8 10

3# #r=  
rads/s. If the subband sampling frequency is 106 samples/s, the phase drift will be equal to 
2.88 deg/sample.

A. Beam Squint

Other arraying schemes only deal with frequency and phase compensation inside the sub-
bands. The delay compensation is carried out by means of a coarse delay buffer before sub-
band decomposition. The first limitation of a scheme such as that appears when there are 
group delay ripples higher than one sample; only phase compensation inside the subbands 
will not be enough to equalize these ripples. Additionally, in such schemes beam squint is 
unavoidable. In order to quantify it, let us take a stationary ( pxl = 0) uniform linear array 
model with p ( ) sinP p c

d
x i= - , where d is the interelement distance and i is the angle of ar-

rival. Suppose that at some angle 0i , the coarse delay buffers are set at pD . At the same time, 
assume that at some desired angle ri , the phase offsets among antennas are compensated 
with r p(( ) ) ( ( ) )sin sinP p P p,p k c c

d
K
k
T c

d
r

2 1

s
z i iX D= - + - +

r . After adding all signals at each 
subband, the result is
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where xsinux i= . According to Equation (13), the beam pattern will depend on the sub-
band number and the baseband frequency in that subband. To calculate the new pointing 
angle for the signal at subband k, the denominator is set equal to zero, yielding

,arcsin u uk
ck

ck
r

ck
0i

X DX

X

X DX
DX

=
-

-
-

e o

where 
sck c K

k
T

2 1
X X= +

r  and 
sMT

DX =
~ . The array pattern will be free of beam squint only if 

k  = 0 and ~ = 0. Should the delay have been totally compensated as in Figure 2, the result 
would be
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which is free of beam squint. Even though the scheme in Figure 2 is free of beam squint, 
the amount of beam squint in an array without subband delay compensation and with 
long distances among array elements is negligible. Only for short distances, as in Figure 3, 
is the beam squint significant. 

B. Transfer Function

The impact of not compensating the term e j M

p
~-
D

 inside the subbands is more noticeable 
when observing the transfer function of the whole array. Under these circumstances, the 
input–output transfer function in the z -domain of a filter bank beamformer can be ex-
pressed as

i i , , ,Y z Y z K F z H z H zW X zW
1

,
i

K

l

K
N

p l i K K
p

P

i

K

0

1

0

1

0

1

0

1

eU= = e
=

-

=

-

=

-

=

-
l l_ _ _ ` ` `i i i j j j> H| | ||

where , ,H z ,
N

p leUe ` j is the z -transform of the delay not compensated at each subband. To 
model this uncompensated delay, and assuming it is lower than the subband sample time, 
a fractional delay filter can be used [7]. The transfer function of the fractional delay filter is

(13)

(14)

(15)

(16)
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, , , , ,H z h n z
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M
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2 1

e eU U=e e
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-
-_ _i i|

where

, ,h n g n g n 1 2l
l

L
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0
1

e eU = + -e
=

_ _ _ _i i i i|

and U  is the adjustable parameter vector given by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .g g g M g g g M g g g M0 1 1 0 1 1 0 1 1L L L0 0 0 1 1 1f f fU = - - -7 A

The fractional delay ,p l0>,p l 6 6e e=  is modeled as a Gaussian random variable with 
mean 0.5 (the input value to the fractional delay filter must be between 0 and 1) and vari-
ance xv

2. Thus, the mean transfer function after adding up all antennas for each subband is
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The different moments for a fractional delay filter with L 4=  are [( )]E 1 2 0e- = , 

x[( ) ]E 1 2 42 ve- = 2, [( ) ]E 1 2 0
3
e- = , and x[( ) ]E 1 2 484 ve- = 4. Therefore, the expected 

transfer function of the whole subband beamformer can be expressed as 

(17)

(18)

(19)

(20)

Figure 3. Beam squint for a 10-element antenna array, with θ0 = 10 deg, θr = 10.582 deg,  

coarse delay buffer step = 10 samples, Ts = 5 ns, BW = 100 MHz, K = 32, and fc = 8 GHz.
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If the coarse delay buffer step is set to one sample and the number of subbands is high, 
evaluation of Equation (21) does not show any important degradation. When working with 
antennas separated long distances apart, it is important to increase the coarse delay step so 
as to increase the field of view. Imagine two antennas separated by 30 km; changing the di-
rection of arrival by 1 mdeg will change the coarse delay buffer by nearly 2 ns. Hence, if the 
coarse delay buffer is set at 2 ns, then it will be possible to acquire only those signals within 
±1 mdeg. This is a very narrow field of view, taking into account that a 34-m antenna has a 
3-dB beamwidth in X-band of approximately 70 mdeg. If the coarse delay step is increased 
to 10 ns (5 samples), the degradation caused by not compensating the subband delay can be 
seen in the dashed and dashed-dot lines of Figure 4. On the contrary, the continuous line, 
which corresponds to an array with subband delay compensation, shows very small ripple 
both in magnitude and phase. In both cases, a perfect reconstruction filter bank with linear 
phase analysis filters has been used [8].

With the scheme depicted in Figure 2, all differential delays are compensated within the 
subband. Therefore, the field of view can be as wide as the 3-dB beamwidth of each indi-
vidual antenna. This can prove very useful when single aperture–multiple link schemes 
are used, as all of the spacecraft within the field of view of each individual antenna can be 
tracked.

IV. Delay Estimation in the Stationary Case

Take the signals at two antennas p and q, p p[ ] [ ]x n x n D= - c  and q q[ ] [ ]x n x n D= - c , that go 
through a filter bank with prototype filter [ ]h n . The subband decomposition of these signals 
( , )i p q=  can be expressed as

K .X n r x r nM Wh,i k i
k r nM

r

= - +
3

3
- +

=-

_ i7 7 7A A A|

An analysis filter bank with K subbands can be interpreted as a K  point spectrum estima-
tor. The estimation of the cross-power spectral density can be obtained by averaging at each 
frequency point the product of the two signals’ spectrum pp

q[ ] { ( ) ( )}k E X k X kx xq
C = *t .1 In 

the case of subband filters, the mean value of the output of each subband filter will be the 
spectrum of the input signal at that frequency. Hence, the expected value of the product of 
the subband signals will have a phase related to the phase difference between the spectrum 
of both antenna input signals:

1 G. C. Carter, Time Delay Estimation, Ph.D. dissertation, University of Connecticut, 1976. 	

(21)

(22)
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sτ
2

Figure 4. Transfer function comparison between beamformers with and without delay subband  

compensation for P = 10, K = 16, N = K /2, and      = 1/N samples.
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Taking its inverse DFT yields

xx p

p

K * .IDFT E X n X n IDFT k W H k m m, ,
*

p k q k
k

x x hh
2q

q
c cC= =

D D- -a ` kj7 7 7 7 7 7A A A A A A$% './ 1

If the last expression is divided by hh [ ]mc , the cross-correlation among the two signals is ob-
tained and any of the methods based on interpolation of the cross-correlation function can 

(23)

(24)
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be used to estimate the delay. The advantage of this method is that it can work with large 
delays and narrow bandwidths, and is relatively immune to spectral gaps, as opposed to 
the phase data method [9]. This advantage is due to the fact that this new method uses not 
only the phase information but also the magnitude information at all subbands. Another 
advantage is that it can work with a low number of subbands, unlike the phase method, 
whose accuracy is influenced greatly by the total number of subbands. Practical implemen-
tation of the method requires replacement of the {}E  operator by a temporal average

hh

k

.r m
m

IDFT X n Y n*

xy

N k
n

N
1

0

1

c
=

=

-

t 7 7

7 7
A A

A A* 4|

In Figure 5, it can be seen how the cross-correlation obtained by this method is equal to the 
one obtained by the direct method, which works with the signals prior to subband decom-
positions. 

(25)

Figure 5. Cross-correlation from direct method and by cross-power spectral density inverse  

transform for a signal with Bn = 0.5, K = 64, and t = 12.5.
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In the case that the bandwidth of the signal is small, this method, unlike the phase data 
method, behaves properly, as seen in Figure 6.

Another important advantage when compared to the phase data method comes in terms of 
fastest convergence when working in low signal-to-noise (SNR) scenarios. To evaluate the 
accuracy of the method, the combining losses in arrays with different number of anten-
nas are calculated. These combining losses arise due to inaccurate estimation of phase and 
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Figure 6. Cross-correlation from direct method and by cross-power spectral density inverse  

transform for a signal with Bn = 0.05, K = 64, and t = –12.5.
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delay. As seen in Figure 7, working at an SNR of –10 dB, convergence can be achieved with 
the subband cross-power spectral density inverse transform (SCPSDIT) method only with 
256 samples per subband even for a large number of antennas.

V. Delay Estimation in the Nonstationary Case

Similar to the method developed in the previous section, an analysis of the cross-power 
spectral density of the subbands in a filter bank can be carried out so as to estimate the 
delay rate among two antennas. The parameters that need to be obtained are the delay and 
delay rate differences, i.e, p qpqD D D= -c c  and p qpqx x x= -l l l. Using the time domain subband 
signals ,p k [ ]x mSB  and q,k [ ]x mSB , and resorting to the development in Section II,

xx
pq

,p q , ,p k q k, * .k m E x m x m k W H k
*SB SB SB

K

m 2pqC C= =
xD +k l` b `j lj7 7 79 7 7A A A C A A

The maximum likelihood estimate of the delay and delay rate can be calculated by maxi-
mizing the following function2:

p q .max X X e
,

i i
j m

im

i~ ~
x

~ x

D

D- +*

l

l_ _ _i i i||

Replacing i~  by the discrete subband frequency /k K2r , and taking expectation on the pre-
vious equation, the result is 

2 A. Whitney, Precision Geodesy and Astrometry via Very-Long-Baseline Interferometry, Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 1974.  	

(27)

(26)
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Figure 7. Comparison of convergence of SCPSDIT and phase data methods in a filterbank with 

 K = 64, M = 32, L = 256, SNR = –10 dB, Bn = 0.5, and Dmax = 1 sample.
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Equation (28) is basically a two-dimensional DFT, so by rearranging the exponential terms, 
the search for the maximum can be efficiently done by the following 2D DFT:

(28)
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(29)
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Equation (29) is to be interpreted as follows: the 2D DFT over the temporal sequence 

,p k ,q k[ ] [ ]x m x m
*SB SB` j  results in a two-variable function composed of the sum of K  functions of 

the form xx K
pq[ ] * [ ]k W H k

k 2C
D  along the line defined in the plane ,l k by l Mpq K

k
x= l . Evalua-

tion of Equation (29) along this line yields xx K
pq[ ] * [ ]k W H k

k 2C
D , which, after following the 

method developed in Section V, yields pqD . The overall algorithm is described next.

Algorithm 1. Cross-power density 2-dimensional IDFT algorithm

Data: 

Result: , ,pq pq pqz D Cl

begin

	 for k 0=  to K 1-  do

			 

	 end

	 Compute 2-dimensional DFT

	

	 for r 0=  to K 1-  do

		  ,p q[ ] [ , ]maxl r r lmax Y= SB

	 end
	 Perform regression analysis over the line s [ , ]r lmax

	
		

	 Calculate cross-power density

	
	 Calculate cross-correlation

	

	 Search for maximum of [ ]m,p qct  and perform parabolic peak interpolation ,pq pq" z Dt t

end

k k[ ] [ ]x m x m
SB SB
, ,p q

[ ]m [ ]mq, , ,p q p kk[ , ]k m xx
*

y = SBSB SB ` j

F, , ,p q p q p q[ , ] [ , ] [ , ]r l k m k m e em
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yY = =
r r- -SB SB SBy8 B ||
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The effect of the Doppler frequency dpq is a shift in frequency, i.e., the new line is 

pq pql M d MK
k

x= +l . As in most cases, the delay rate is very small; the subband signals 

,p k [ ]x mSB  can be further decimated before carrying out the multiplication of subband signals. 
This is because the differential Doppler frequency cxX l is very small in comparison with the 
sampling frequency fs. In this way, the number of points to be stored can be reduced and 
the time to compute the 2D DFT reduced as well. 

The overall procedure is illustrated in the following figures, which are the result of delay-
ing a broadband signal modeled as Gaussian noise filtered at .0 9n~ r= . Figure 8 shows the 
contour plot of the 2D DFT in Equation (29). The line corresponding to variation of the 
differential Doppler across the subbands can be seen clearly. 

Figure 8. Contour plot of ,p q [ ],k m e ek m
j K kr j K ml
2 2

| | C
r r

- -SB . Initial delay D = 400 samples, t ′ = 10–6, fs = 1 GHz, 

SNR = –10 dB, L = 227 samples (0.125 s), K = 1024 subbands, and M = K/2.
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Once the cross-power spectral density is evaluated along the line defined by the maximum 
values, the cross-correlation can be obtained by computing the inverse DFT. The result is 
shown in Figure 9, and as in Section IV, the cross-correlation has a clear peak at the value 
corresponding to the delay at the beginning of the data. Finally, the value of the phase is 
evaluated by carrying out a parabolic interpolation of the peak value.

The bias and standard deviation of the estimates of , ,z x xl have been computed by simula-
tion for several values of SNR (Figure 10). In all cases, every point is the result of 50 execu-
tions. From the results, it can be gathered that phase and delay rates estimates are unbiased; 
the bias in delay estimation is due to the parabolic peak interpolation. It is worth point-
ing out the high accuracy of all estimates for low SNR, due mainly to the high number of 
samples involved. 
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Figure 9. Magnitude of ,p q [ ] [ [ ]]Fm r,p q
1

c C=
-t t . Initial delay D = 400 samples, t ′ = 10–6, fs = 1 GHz,  

SNR = –10 dB, L = 227 samples (0.125 s), K = 1024 subbands, M = K/2, and subband second decimation = 16.
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Finally, this algorithm has been simulated jointly with the arraying scheme of Section III 
for two antennas with a differential delay rate of 10–6, an initial delay equal to 99 subband 
samples, an SNR equal to 7 dB, and a QPSK signal with 100 MHz bandwidth and a roll-off 
factor equal to 0.9. The filter bank has been configured with 16 subbands and a decimation
ratio equal to 8. The resulting combination losses are lower than 0.2 dB, and the signal to 
distortion ratio is above 30 dB. No transients have been detected and the demodulation 
of the signal has been done with the corresponding error rate to a signal to noise ratio of 
10 dB. 

VI. Conclusions

When combining antennas across long distances, the high delay rates among antennas 
cause high-differential, subband-dependent Doppler that must be compensated in order to 
coherently combine the antennas. Additionally, if a wide field of view is required and to 
reduce synchronization problems when linking remote sites, subband delay compensation 
must be used in addition to phase and frequency subband compensation. An algorithm to 
calculate the phase, delay, and delay rate between two antennas separated by large distances 
and subject to high delay rates has also been devised. This algorithm does not need a previ-
ous estimation of the delay rate nor a precompensation of it. Subband signals can be further 
decimated prior to use in the algorithm, thus reducing memory requirements and number 
of operations. The use of fast Fourier transform (FFT) algorithms for the calculation of the 
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Figure 10. Bias and standard deviation of φ,τ,t ′ estimates versus input SNR. Initial delay ∆ = 400 samples,  

t ′ = 10–6, fs = 1 GHz, L = 228 samples (0.25 s), K = 1024 subbands, M = K/2, and subband second decimation = 16.
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functions to be maximized allows an efficient implementation of the overall procedure. The 
accuracy of the algorithm at low SNR is high, due to the joint use of subband information, 
allowing application of the method to arrays with a large number of antenna elements, or 
to other applications where low SNRs are involved, such as very long baseline interferom-
etry (VLBI) or delta-differenced one-way ranging (Delta-DOR). 
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